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Three-dimensional instability of axisymmetric flows: Solution of
benchmark problems by a low-order finite volume method
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SUMMARY

Several problems on three-dimensional instability of axisymmetric steady flows driven by convection
or rotation or both are studied by a second-order finite volume method combined with the Fourier
decomposition in the periodic azimuthal direction. The study is focused on the convergence of the
critical parameters with mesh refinement. The calculations are done on the uniform and stretched grids
with variation of the stretching. Converged results are reported for all the problems considered and are
compared with the previously published data. Some of the calculated critical parameters are reported for
the first time. The convergence studies show that the three-dimensional instability of axisymmetric flows
can be computed with a good accuracy only on fine enough grids having about 100 nodes in the shortest
spatial direction. It is argued that a combination of fine uniform grids with the Richardson extrapolation
can be a good replacement for a grid stretching. It is shown once more that the sparseness of the Jacobian
matrices produced by the finite volume method allows one to enhance performance of the Newton and
Arnoldi iteration procedures by combining them with a direct sparse linear solver instead of using the
Krylov-subspace-based iteration methods. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a recent paper [1], the convergence of the critical parameters corresponding to instabilities of
convective flows in rectangular cavities was studied. It was shown that using a low-order numerical
method the acceptable accuracy of the calculated critical parameters can be reached only on grids
consisting of 1002 nodes or more. The necessity to use a low-order method is dictated by many
practical problems, for which application of higher-order methods is too complicated. Such practical
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problems, among which we can mention the problem of stability of melt flow in bulk crystal growth
processes, usually have an axisymmetric geometry, so that an unperturbed flow is also expected
to be axisymmetric and steady. It is well known that with the increase of a forcing parameter,
e.g. Reynolds, Grashof, Marangoni number, these flows become unstable and transform into an
axisymmetric oscillatory or into three-dimensional steady or oscillatory state. In the latter case,
the axisymmetry of the initial base state is broken and three-dimensional calculations are needed
to model supercritical flows.

Due to existing computer restrictions, fully three-dimensional unsteady computations usually
cannot be done on fine grids. Performing calculations using coarse grids without a detailed conver-
gence study can lead to qualitatively wrong results. The corresponding examples are given below.
This accuracy problem can be partially removed for the axisymmetric base flows if the study is
restricted to their linear stability with respect to all possible infinitesimal perturbations. When
the flow region is axisymmetric, the flow can be looked for as a Fourier series, with the Fourier
decomposition applied in the periodic azimuthal direction. In a fully non-linear case, the Fourier
modes interact, so that the Fourier decomposition does not yield a significant reduction in the
number of degrees of freedom corresponding to a chosen numerical model. However, when linear
stability of an axisymmetric base flow is considered, the problem for each Fourier mode separates
from the others. This allows one to replace a fully three-dimensional problem by a series of two-
dimensional-like computations, so that every computation treats a significantly smaller amount of
degrees of freedom. In this way rather fine grids can be used. In the following calculations, we
use the grids consisting of up to 5002 nodes in the meridional plane.

In this paper, we use a low-order finite volume method to study the axisymmetry-breaking
three-dimensional instabilities of axisymmetric steady base flows. We consider several benchmark
problems and focus our attention on the convergence of the critical parameters with the grid
refinement and on the effect of grid stretching. It should be mentioned that the benchmark problems
for axisymmetric flows, especially including their three-dimensional instability, are not established
as well as the benchmark problems in rectangular cavities considered in [1]. We can mention
recently formulated benchmark [2] and results of [3–6], which were used for the benchmarking
purposes in [7–14] and other studies. Also, the spectral and pseudospectral methods that yield
a high-accuracy benchmark data for the flows in rectangular enclosures are not so usual for
the cylindrical domains. The spectral, pseudospectral and collocation methods were successfully
applied in [3–6, 10, 11], while in other studies [12–18] the authors preferred to use lower-order finite
volume or finite element methods. For more complicated problems directly related to simulation of
flows in different technological processes (e.g. [7, 8]), the low-order methods seem to be the only
possible choice. This indicates once more on the necessity to study the convergence of the critical
parameters calculated by a low-order numerical approach. Note also that most of flows considered
below have discontinuities in boundary conditions. Such discontinuities are rather common for
both model flows and more complicated technological applications. A special care should be taken
to treat a discontinuity by a spectral method [5, 6, 9], and even then the discontinuity can cause
undesirable numerical problems when three-dimensional perturbations are calculated [9]. For low-
order methods, such discontinuities do not pose any technical difficulties, however can slow down
the convergence.

In the following, we consider several model axisymmetric flows in cylindrical enclosures starting
from the natural convection flow in a non-uniformly heated cylinder. Then we consider two different
flows driven by the thermocapillary convection and a swirling isothermal flow driven by rotation of
one of boundaries. Finally, we consider a model flow driven by both natural convection and rotation.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:269–294
DOI: 10.1002/fld



THREE-DIMENSIONAL INSTABILITY OF AXISYMMETRIC FLOWS 271

Along with the grid refinement and stretching, we study the possibility to improve numerical results
by the Richardson extrapolation.

The numerical procedure used here for calculation of the axisymmetric steady states and study
of their stability is similar to one used in [1]. The governing equations are discretized using the
finite volume method in radial and axial directions and by applying the Fourier decomposition
in the azimuthal direction. Steady states are calculated by the exact Newton iteration with fully
calculated Jacobian matrix. The eigenproblem needed for the stability analysis is solved by the
Arnoldi method using the ARPACK package‡ [19]. As in [1], the computations are made effective
with the help of MUMPS multifrontal direct solver,§ which is used for the calculation of the LU
decomposition of the sparse Jacobian matrices.

Performing the convergence studies up to grids of 5002 nodes we show that similar to the
flows in rectangular cavities one needs about 100 grid points in the shortest spatial direction to
obtain reliable results on the axisymmetry breaking of axisymmetric flows. We show that the grid
stretching can significantly improve the results, but not every stretching is effective or helpful.
We show also that the results obtained on uniform grids can be significantly improved using the
Richardson extrapolation and argue that it can be a good replacement for the grid stretching.

2. FORMULATION OF THE PROBLEMS AND NUMERICAL METHOD

A problem of numerical study of stability of steady axisymmetric convective flows of a Boussinesq
fluid with kinematic viscosity �∗ and thermal diffusivity �∗ in an axisymmetric region R∗in�r�R∗out,
0�z�H∗ with respect to infinitesimally small three-dimensional perturbations is considered. The
polar axis of the flow region is assumed to be parallel to the gravity force. The inner radius
R∗in is zero for cylindrical domains and is finite for cylindrical layers. The flow is described by
the momentum, continuity and energy equations in cylindrical coordinates (r∗, z∗). To render the
equations dimensionless we use the scales D∗ = R∗out−R∗in, D∗2/�∗, �∗/D∗, �∗(�∗/D∗)2 for length,
time, velocity and pressure, respectively. The temperature is rendered dimensionless by the relation
T = (T ∗ − T ∗cold)/(T ∗hot − T ∗cold), where T ∗hot and T ∗cold are the maximal and minimal temperatures
at the boundaries of the flow region. The set of Boussinesq equations for the non-dimensional
velocity v={vr , v�, vz}, temperature T and pressure p in the domain Rin�r�Rout, 0�z�A reads

�v
�t
+ (v · ∇)v=−∇ p + �v+ Gr �ez (1)

�T
�t
+ (v · ∇)T = 1

Pr
�T (2)

∇ · v= 0 (3)

Here, A= H∗/D∗, Rin= R∗in/D∗, Rout= R∗out/D∗ are the aspect ratio and dimensionless inner and
outer radii of the flow region, Gr= g∗�∗(T ∗hot − T ∗cold)D∗3/�∗2 the Grashof number, Pr= �∗/�∗
the Prandtl number, g∗ gravity acceleration, �∗ the thermal expansion coefficient and ez the unit

‡See http://www.caam.rice.edu/software/ARPACK/
§See http://www.enseeiht.fr/apo/MUMPS/or http://grall.ens-lyon.fr/MUMPS/
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vector in the z-direction. The boundary conditions will be specified below, separately for each
problem.

The axisymmetric steady solution of (1)–(3) with the corresponding boundary conditions is
calculated by a standard finite volume method as described in [1]. The non-linear terms are
approximated by the conservative central differencing scheme. This approximation is chosen for
the same reasons as in [1]. The finite volume grid is staggered and can be uniform or stretched.
The uniform grid defined in the nodes ri and z j is transformed into a stretched one by

ri ← Rout

[
ri
Rout
− a sin

(
2�

ri − Rin

Rout − Rin

)]
, z j ← A

[ z j
A
− b sin

(
2�

z j
A

)]
(4)

After the transformation defined by Equation (4) the grid becomes stretched near the boundaries.
The density of the stretching is defined by the parameters a and b which vary between 0 and 0.12.
The effect of the stretching is studied separately and is discussed for each problem considered below.

Calculation of an axisymmetric base state V={U (r, z), V (r, z),W (r, z)}, T (r, z) and P(r, z)
proceeds in the following way. The scalar variables T and P , the azimuthal velocity component
V and the divergence of velocity ∇ · V are calculated at the nodes with integer indices [ri , z j ].
The radial and axial velocity components U and W are calculated in the points [ri+1/2, z j ] and
[ri , z j+1/2], respectively, where ri+1/2= (ri + ri+1)/2 and z j+1/2= (z j + z j+1)/2. Denoting by
square brackets with subscripts [•]i, j approximation of a term in the appropriate grid node, the
resulting system of steady equations reads

[
U

�U
�r

]
i+1/2, j

+
[
W

�U
�z

]
i+1/2, j

−
[
V 2

r

]
i+1/2, j

=−
[
�P
�r

]
i+1/2, j

+
[

�2U
�r2
+ 1

r

�U
�r
− U

r2
+ �2U

�z2

]
i+1/2, j

(5a)

[
U

�V
�r

]
i, j
+

[
W

�V
�z

]
i, j
+

[
UV

r

]
i, j
=

[
�2V
�r2
+ 1

r

�V
�r
− V

r2
+ �2V

�z2

]
i, j

(5b)

[
U

�W
�r

]
i, j+1/2

+
[
W

�W
�z

]
i, j+1/2

=−
[
�P
�z

]
i, j+1/2

+
[

�2W
�r2
+ �2W

�z2

]
i, j+1/2

+ Gr

2
(Ti j + Ti, j+1) (5c)

[
1

r

�(rU )

�r

]
i, j
+

[
�W
�z

]
i, j
= 0 (5d)

[
U

�T
�r

]
i, j
+

[
W

�T
�z

]
i, j
= 1

Pr

[
�2T
�r2
+ �2T

�z2

]
i, j

(5e)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:269–294
DOI: 10.1002/fld



THREE-DIMENSIONAL INSTABILITY OF AXISYMMETRIC FLOWS 273

The indices i and j vary from 1 to Nr and Nz , respectively. To obtain the base steady
axisymmetric flow, Equations (5) are solved using the Jacobian-full Newton iteration. The Ja-
cobian matrix is evaluated analytically. The computations proceed as in [1] using the MUMPS
solver at each iteration to calculate the solution of the corresponding system of linear algebraic
equations.

Assuming that {ũ(x, y), ṽ(x, y), w̃(x, y), �̃(x, y), p̃(x, y)} exp(�t + im �) is an infinitesimally
small three-dimensional perturbation characterized by the complex amplification rate � and the
azimuthal integer wavenumber m, the linear stability eigenproblem written for a calculated steady-
state U , V ,W , T , P reads

�ũi+1/2, j =−
[
U

�ũ
�r
+ ũ

�U
�r
+W

�ũ
�z
+ w̃

�U
�z
+ im

r
V ũ − 2V ṽ

r

]
i+1/2, j

−
[
� p̃
�r

]
i+1/2, j

+
[

�2ũ
�r2
+ 1

r

�ũ
�r
− ũ

r2
− m2

r2
ũ + �2ũ

�z2
− 2 im

r2
ṽ

]
i+1/2, j

(6a)

�ṽi, j =−
[
U

�ṽ

�r
+ ũ

�V
�r
+W

�ṽ

�z
+ w̃

�V
�z
+ im

r
V ṽ + U ṽ + V ũ

r

]
i, j

−
[
im

r
p̃

]
i, j
+

[
�2ṽ
�r2
+ 1

r

�ṽ

�r
− ṽ

r2
− m2

r2
ṽ + �2ṽ

�z2
+ 2 im

r2
ũ

]
i+1/2, j

(6b)

�w̃i, j+1/2 =−
[
U

�w̃

�r
+ ũ

�W
�r
+W

�w̃

�z
+ w̃

�W
�z
+ im

r
V w̃

]
i, j+1/2

−
[
� p̃
�z

]
i, j+1/2

+
[

�2w̃
�r2
+ 1

r

�w̃

�r
− m2

r2
w̃ + �2w̃

�z2

]
i, j+1/2

+ Gr

2
(�̃i j + �̃i, j+1) (6c)

0=
[
�ũ
�r
+ ũ

r
+ im

r
ṽ + �w̃

�z

]
(6d)

��̃i, j =−
[
U

��̃

�r
+ u

�T
�r
+W

��̃

�z
+ w

�T
�z
+ im

r
V �̃

]
i, j

+ 1

Pr

[
�2�̃
�r2
+ 1

r

��̃

�r
− m2

r2
�̃+ �2�̃

�z2

]
i, j

(6e)
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These equations can be written in the matrix form as

�B(ũ, ṽ, w̃, p̃ �̃)T= J(ũ, ṽ, w̃, p̃ �̃)T (7)

Here, J is the Jacobian matrix calculated from the r.h.s. of (6) and B is the diagonal matrix such that
its diagonal elements corresponding to the values of ũ, ṽ, w̃, �̃ are equal to one, while the elements
corresponding to p̃ are zeros. The consequence of the latter is detB= 0. Thus, the generalized
eigenproblem (7) cannot be transformed into a standard eigenproblem. To study stability of an
axisymmetric steady flow state for a given set of the governing parameters, it is necessary to
compute the eigenvalue � having the largest real part for all integer azimuthal wavenumbers m.
This � is called leading eigenvalue. Apparently, �= maxm{Real[�(m)]}>0 means instability of
the axisymmetric steady flow state. The value of the azimuthal wavenumber yielding the maximum
of Real(�) we call critical and denote as mcr. The imaginary part of the leading eigenvalue we call
critical frequency and denote as �cr= Im[�(mcr)]. The corresponding eigenvector of (7) defines
the meridional pattern of the most unstable perturbation of the base state.

Eigenproblem (7) is solved by the Arnoldi iteration in the shift-and-invert mode

(J− 	B)−1B(ũ, ṽ, w̃, p̃ �̃)T= 
(ũ, ṽ, w̃, p̃ �̃)T, 
= 1

�− 	
(8)

where 	 is a complex shift. The ARPACK package [19] is used. To calculate the leading eigenvalue
�, it is necessary to choose the shift 	 close to � and to calculate 10–20 eigenvalues 
 with the
largest absolute value. The choice of 	 can be an easy task if the estimate of � is known relatively
well. For many problems, like those studied in [7, 8] or one considered in Section 3.4, we fix
Real(	)= 0 and vary Im(	) until the leading eigenvalue � is computed. Then we calculate the
instability point with 	= (0, Im(�)) and vary Im(	) further to ensure that there is no another
eigenvalue with larger real part.

The computations proceed similar to the ones described in [1] with an addition related to the
varying of the azimuthal wavenumber m. At the first stage, we calculate a steady axisymmetric flow
state using the Jacobian-full exact Newton iteration. Then, the linear stability of the calculated
steady flow is studied for each value of m separately. For each m, we compute the marginal
value of the critical parameter, which can be Reynolds, Grashof or Marangoni number or other.
The marginal value is computed by solving the equation max[Real(�)]= 0 for a fixed m using the
secant method. All other parameters during these computations are fixed. The minimum of the
marginal values over all m yields the value of the critical parameter corresponding to the instability
of the base flow.

As it was done in [1], we combine both Newton and Arnoldi iteration techniques with the
multifrontal direct solvers for sparse matrices (we use the MUMPS solver). The efficiency of this
approach is a sequence of the high level of sparseness of the Jacobian matrices of Equations (5)
and (6). Using the second-order finite volume discretization scheme, these matrices are composed
from banded blocks of the size (Nr × Nz)× (Nr × Nz), where each block have less than 15
diagonals filled by non-zero elements. Similar to two-dimensional flows in the Cartesian coordinates
considered in [1], the LU-decomposition of the matrix (J− 	B) remains unchanged for the whole
Arnoldi iteration procedure, which makes the iterations much faster than it is observed in the cases
when Krylov-subspace-based iterative solvers are applied. For the Newton iteration, the efficiency
of such approach is not obvious, but appears to be rather good. The characteristic times are reported
in the Appendix.
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3. RESULTS

In the following, we study mainly the critical parameters corresponding to a threshold from a
steady axisymmetric flow to a three-dimensional steady or oscillatory state or to an axisymmetric
oscillatory flow. As in Reference [1], we argue that an accurate calculation of the critical parameters
requires a good resolution of both steady-state base flow and the most unstable perturbation, that
together comprise a representative benchmark exercise.

3.1. Buoyancy convection in a cylinder with parabolically heated sidewall

For the first example we consider a buoyancy convection flow in a cylinder (Rin= 0) with a
parabolical temperature distribution at its sidewall

T (r = Rout= 1)= 4

[
1−

( z

A

)2]
(9)

The top and the bottom of the cylinder are kept at a constant temperature T = 0, so that the minimal
and maximal dimensionless temperatures are 0 and 1, respectively. All the boundaries are no-slip.
Details on this problem can be found in [4], where it was studied by the global Galerkin method.
The results of [4] were then used in [9, 11] as a benchmark data. Here, we consider one particular
case defined by A= 2 and Pr= 0.03.

The convergence of the marginal Grashof numbers and marginal frequencies for the azimuthal
wavenumber m varied from 0 to 5 is shown in Table I. The calculations are carried out on the
uniform finite volume grid gradually increased from 50× 100 to 300× 600 finite volumes by
the increments of 10 in r - and 20 in z-direction. For the perturbations corresponding to m= 3,
4, and 5, the most unstable perturbation is steady, so that the marginal frequencies are equal to
zeros and are not shown in the table. The bold rows of the table show the result of Richard-
son extrapolation based on two preceding grids. The last row shows the result obtained in [4]
by the global Galerkin method, which is converged to within the fourth decimal digit at least.
It is seen from Table I that already on a relatively coarse grid of 60× 120 finite volumes it
is possible to obtain two correct decimal digits of the marginal parameters. This convergence
is faster than those observed for convection in rectangular cavities in [1], which is also con-
sistent with the convergence observations of [14]. It is also clearly seen that the convergence
of smaller marginal values is faster than that of the larger ones (e.g. compare convergence for
m= 2 and m= 0 and 5). Note that the Richardson extrapolation can significantly improve the
accuracy of results. It is clearly seen for the fine grids 290× 580 and 300× 600. The improve-
ment is observed also for coarser grid for the cases where convergence of a marginal parameter
is monotonic.

Table II illustrates the choice of the stretching. We pick up the critical Grashof number, which
for the case considered corresponds to the azimuthal mode with m= 2, and focus on the grid
consisting of 150× 300 finite volumes. Then we vary parameters a and b in Equation (4) to
choose their combination yielding the critical Grashof number closest to the result of the global
Galerkin method [4]. This procedure yields a= 0.12 and b= 0 (Table II). To study the effect
of this ‘optimal’ stretching and another stretching with a= b= 0.12 on the convergence of the
marginal parameters, we repeat the calculations varying the grid gradually between 50× 100 and
300× 600 nodes. The results for m= 2 and 0 are shown in Figure 1(a), (b) and Figure 1(c),
(d), respectively. The convergence of the marginal Grashof number (which is also critical for the
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Table II. Effect of the stretching for the critical Grashof number and critical frequency.

a b Grcr �cr/
√
Grcr

0 0 95 952.8 0.197713
0.01 0 95 944.7 0.197717
0.02 0 95 937.0 0.197721
0.05 0 95 919.3 0.197735
0.1 0 95 903.2 0.197763
0.12 0 95 901.6 0.197761
0.12 0.01 95 901.98 0.197779
0.12 0.05 95 905.1 0.197786
Result of Galerkin method 95 850.8 0.197716

Natural convection in a cylinder with parabolically heated sidewall. A=H/R=2, Pr=0.03,
Nr=Nz/2=150.
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Figure 1. Convergence of the marginal Grashof number and marginal frequency for convection in a
cylinder with parabolically heated sidewall. The subscript G stays for the calculation by global Galerkin

method with 40× 40 basis functions [4].
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Figure 2. Modulus of the most unstable perturbations at m= 0 and 2 for natural convection in a cylinder
with parabolically heated sidewall.

case considered) and marginal frequency for m= 2 is faster with the stretching. The ‘optimal’
stretching with a= 0.12 and b= 0 really yields a faster convergence. The results for a= b= 0.12
converge slower, but not significantly. When the same stretching parameters were applied for the
axisymmetric mode m= 0, for which the marginal Grashof number is larger we did not observe
any faster convergence for the stretched grids (Figure 1(c) and (d)). The reason for that is a
different pattern of the marginal perturbations corresponding to two azimuthal modes. To illustrate
that the modules of the complex perturbations of the temperature, radial and axial velocities
are depicted in Figure 2. Note that that the ‘optimal’ stretching was chosen on the basis of the
a priori known result, which is not the case for most of applied studies. The uniform grids allow for
the Richardson extrapolation, which for the two examples of Figure 1 yields better accuracy than
any stretching. This example shows that in cases when computations are performed on fine grids
having several hundred nodes in one direction the improvement of the convergence by a stretching
is not so obvious and use of fine uniform grids combined with the Richardson extrapolation can
be preferable.

3.2. Thermocapillary convection in cylindrical containers

3.2.1. Liquid bridge. Computations related to thermocapillary-driven flows in containers usually
are more difficult because the problem formulations can contain discontinuity points at the bound-
ary. As a first example, we consider one of the benchmark problems defined in [2]. Flow driven
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by a thermocapillary force in a cylindrical liquid bridge (Rin= 0) located between two isothermal
disks is considered. The boundary conditions for the basic flow are

v= 0 at z= 0 and A (10)

T = 0 at z= 0 and T = 1 at z= A (11)

�T
�r
= 0 at r = Rout= 1 (12)

U = 0,
�W
�r
=−MaPr

�T
�z

,
�V
�r
=−MaPr

1

r

�T
��

at r = Rout= 1 (13)

Here Ma= �∗(T ∗hot − T ∗cold)D∗/�∗�∗�
∗ is the Marangoni number, � is the density and � is the

coefficient of the assumed linear dependence of the surface tension coefficient on the temperature.
The boundary conditions for the perturbations are the same except Equations (11), which must be
made homogeneous. It is easy to see that the derivatives �W/�r and �V /�r at r = 1 and z= 0
and A are zeros in Equation (10) and non-zeroes in Equation (13). Thus, the problem contains
two discontinuity points, which complicate the calculations. The use of Richardson extrapolation
becomes problematic in such cases because the Taylor series diverge in the vicinity of such points.
Following [2, 3], we consider the case with A= 1, Gr= 0 and Pr= 0.01.

The exercise for the convergence study similar to one described in the previous subsection is
reported in Table III and Figure 3. The axisymmetry-breaking bifurcations for m= 1 and 2 are
steady and the corresponding zero frequencies are not reported. It is seen that two correct decimal
digits of all the marginal values can be obtained using a grid with not less than 100× 100 nodes.
Coarser grids lead to a noticeable inaccuracy. Our result for the critical Marangoni number at
m= 2 agrees well with results of Ermakov and Ermakova obtained on a 161× 161 grid [2, 15]
and with the early result of Wanshura et al. [3] obtained by the Chebyshev collocation method
yielding much faster convergence. Other results reported in Table 10 of [2] are obtained on too
coarse grids and disagree significantly with our converged result of Macr= 18.98.

An interesting observation can be derived from Figure 3. The fastest convergence is observed for
the azimuthal mode m= 2, for which the marginal Marangoni number is minimal. The next to the
minimal marginal Marangoni number corresponds to m= 1 (Table III), however, its convergence
is much slower than that of m= 3, in spite of the difference in the magnitudes of Mam .

The ‘optimal’ stretching was looked for as above, considering the grid 150× 150 and the modes
m= 1 and 4. It was found that the stretching values closest to those corresponding to the uniform
grid 300× 300 are a= 0.12, b= 0.05 for m= 1 and a= 0, b= 0.1 for m= 4. The convergence
yielded by these two stretching is compared in Figure 4 with the convergence observed for the
uniform grid. In this example, the stretching exhibits almost no convergence improvement com-
pared with the uniform grid. The most striking example is seen in Figure 4(a) for m= 1. At
the grid 150× 150, the result obtained with the stretching a= 0.12, b= 0.05 is Mam = 32.812
which is very close to the value 32.8099 calculated on the 450× 450 uniform grid. It is seen
that the marginal number calculated using this stretching only crosses the reference value at
N = 150, but does not converge to it. The consequent values of Mam calculated on the 4302,
4402 and 4502 stretched grid are 32.605, 32.594 and 32.583, respectively. Here, the changes are
observed in the fourth decimal digit, while the corresponding results obtained on the uniform
grid (Table III) change in the fifth decimal digit, which indicates that a better convergence cor-
responds to the uniform grid. The stretching does not exhibit any convergence improvement for
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Figure 3. Convergence of the marginal Marangoni number and marginal frequency for thermocapillary
convection in a cylindrical liquid bridge.

the critical mode m= 2 (Figure 4(b)). A slight improvement in the convergence of the marginal
values Mam is observed for m= 4 (Figure 4(c)), which is followed by a significant convergence
speedup observed for the marginal frequency (Figure 4(d)). Note, that denser stretching puts the
grid points closer to the discontinuity points at the corners, which can affect the results in an
undesirable way.

The bold rows of Table III contain results of the Richardson extrapolation from two preceding
rows. In spite of the discontinuity points mentioned above the Richardson extrapolation can improve
the result, which is most striking for coarser grids. The latter is illustrated also in Figure 4, where
the Richardson extrapolation points are shown by symbols. Again, the Richardson extrapolation
exhibits a significant improvement of the results calculated using the uniform grids.

3.2.2. Annular pool. Another widely studied model of axisymmetric thermocapillary convection
is the flow in an annular pool (see [16–18] and references therein). The flow region is bounded
by two coaxial cylinders maintained at different temperatures. The pool bottom is assumed to be
no-slip and the upper surface to be flat and subjected to the thermocapillary force. Both the pool
bottom and the upper surface are thermally insulated. The boundary conditions read

v= 0 at R= Rin, R= Rout and z= 0 (14)

T = Tin at R= Rin and T = Tout at R= Rout (15)

�T
�z
= 0 at z= 0 and A (16)

W = 0,
�U
�z
=−MaPr

�T
�r

,
�V
�z
=−MaPr

1

r

�T
��

at z= A (17)
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Figure 4. Effect of different stretching on the convergence of the marginal Marangoni number and
marginal frequency for thermocapillary convection in a cylindrical liquid bridge.

Considering the three-dimensional instability of this flow, one concludes that this problem is more
difficult for calculations than the previous one. Much finer grid is needed to obtain qualitatively
correct result on the flow instability. To reach a convergence of the critical values, a further mesh
refinement should be used. To illustrate how different are results obtained on different coarse grids,
we refer to Table I of [16], Table II of [17], and Table I of [18].

For this study, we used parameters of [16–18] and recalculated the marginal and critical pa-
rameters on fine grids used here. The results are reported in Table IV and are compared there with
the results of [16–18]. The present results are converged to within the third decimal digit at least.
Comparison with the independent data shows that results are relatively close when the aspect ratio
of the cavity is close to unity. The exception is the result of [17] for A= 0.85, where the criti-
cal Marangoni number was overestimated. When the aspect ratio decreases the critical azimuthal
wavenumber grows, so that at A= 0.15 the azimuthal modes with m= 10 and 11 become critical.
Clearly, such instability cannot be resolved using 60–70 grid points in the azimuthal direction,
which leaves only 6–7 grid points per one azimuthal period. The marginal Marangoni numbers
calculated for smaller m are closer to the results of [17], which also indicates that computations

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:269–294
DOI: 10.1002/fld



284 A. Y. GELFGAT

Ta
bl
e
IV
.
C
om

pa
ri
so
n
of

re
su
lts

fo
r
in
st
ab
ili
ty

of
th
e
th
er
m
oc
ap
ill
ar
y
co
nv
ec
tio

n
in

an
an
nu
la
r
po
ol
.

Pr
es
en
t
re
su
lt

In
de
pe
nd

en
t
re
su
lt

A
R
in

/
R
ou

t
P
r

m
M
a m

/
P
r

�
m

gr
id

M
a m

/
P
r

�
m

R
ef
er
en
ce

G
ri
d
N
r
×

N
�
×

N
z

1.
11

1
0.
1

30
2

23
60

25
.6
5

45
0
×
45

0
20

48
2.
32

[16
]

71
×
31
×
71

0.
85

0.
5

6.
7

4
15

91
21

.1
1

45
0
×
45

0
76

51
[17
]

62
×
63
×
42

0.
55

0.
5

6.
7

3
66

25
59

.9
8

60
0
×
30

0
61

55
57

.1
4

[17
]

62
×
63
×
42

0.
3

0.
5

6.
7

7
29

71
62

.8
4

60
0
×
20

0
[17
]

0.
3

0.
5

6.
7

2
59

46
45

.8
5

60
0
×
20

0
66

30
[17
]

62
×
63
×
42

0.
15

0.
5

6.
7

3
66

99
23

3.
8

90
0
×
15

0
67

19
14

9.
2

[17
]

62
×
63
×
42

0.
15

0.
5

6.
7

10
60

35
25

2.
2

90
0
×
15

0
[17
]

0.
15

0.
5

6.
7

11
60

34
25

7.
9

90
0
×
15

0
[17
]

1.
26

58
0.
21

14
3

16
58

24
.2
3

45
0
×
45

0
16

40
[18
]

30
×
16
×
30

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:269–294
DOI: 10.1002/fld



THREE-DIMENSIONAL INSTABILITY OF AXISYMMETRIC FLOWS 285

of these authors were restricted to the modes corresponding to relatively small m. Note, that to
obtain converged values of the marginal numbers, we needed more than 150 grid nodes in the
shortest meridional direction.

3.3. Isothermal rotating disk–cylinder flow

For the next example, we consider an isothermal swirling flow in a stationary vertical cylinder cov-
ered by a rotating disk. All cylindrical boundaries are no-slip and the flow is defined by the cylinder
aspect ratio and the Reynolds number based on the angular velocity of the disk Re=�R2

out/�.
This problem is studied for many years (see [5, 6, 10, 12, 13] and references therein). Here, we
focus on the axisymmetric and three-dimensional instabilities of this flow studied in [5, 6] by the
global Galerkin method. The results of these two works were then widely used as benchmark data,
e.g. in [10, 12, 13] and other studies, and were proven to be accurate to within at least the third
decimal digit. Here, we use these results to examine the convergence of the finite volume method.
Note, that all three velocity components of the basic axisymmetric flow of this problem are not
zeros, which makes this case qualitatively different from the previous ones.

Here, we examine the convergence of the critical Reynolds number and critical frequency
for different stretched grids and for three different aspect ratios of the cylinder. The results are
presented in Figures 5–7. The results obtained by the global Galerkin method in [6] are denoted
with the subscript ‘cr, G’ and are reported in the figure captions. It is seen from the figures that
in this example the stretching appears to be very important for reaching a converged result. An
interesting observation is that the critical parameters calculated using the uniform grid did not
reach the converged values for the finest grids used, while use of some of the stretched grids (but
not all of them) allowed us to converge to the critical values, which are almost identical to the
results of [6]. This observation for the uniform grid is consistent with the similar ones reported in
[10, 13]. Thus, the importance of a ‘good’ stretching can be emphasized once more.

Examination of results yielded by the Richardson extrapolation (Figures 5–7) show that for
N�200 they almost coincide with those yielded by the most successful stretching. This observation
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Figure 5. Effect of different stretching on the convergence of the: (a) critical Reynolds number; and (b)
critical frequency for a disk–cylinder flow. A= 1, mcr= 2, Recr,G= 2471, �cr,G= 0.07657.
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can be done for all six frames of Figures 5–7. A more careful observation of the results obtained on
stretched grids shows that the stretching yielding the fastest convergence for the critical Reynolds
number, i.e. a= 0, b= 0.02 for A= 1, Figure 5(a); a= 0.02, b= 0.12 for A= 2.5, Figure 6(a);
and a= 0, b= 0.1 for A= 3.5, Figure 7(a), does not necessarily mean the fastest convergence
of the critical frequency. The frames (b) of these figures show that in all three examples the
fastest convergence of the critical frequency is yielded by another stretching. At the same time,
the Richardson extrapolation is always the same and yields results comparable to those yielded
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by a ‘good’ stretching. Therefore, this example also supports the previously made conclusion that
using fine uniform grids combined with the Richardson extrapolation can be more robust than the
grid stretching.

3.4. Non-isothermal rotating disk–cylinder flow

Many practically important problems relate to the flows driven by a combined action of con-
vection and rotation. One of examples for that is the melt flow in a Czochralski crystal growth
device studied by Gelfgat et al. [7] by a similar numerical approach. However, this flow is too
complicated for the benchmark purposes. A simpler model was considered recently by Iwatsu
[20]. In this model the rotating disk–cylinder flow is subjected to a non-uniform heating, so that
both rotation and buoyancy force affect the flow. We follow the problem formulation of [20] and
consider the cylinder with isothermal top and bottom and perfectly insulated sidewall. Assum-
ing a convectively stable stratification, i.e. cold bottom and hot top, the temperature boundary
condition reads

T = 0 at z= 0, T = 1 at z= A,
�T
�r
= 0 at r = Rout= 1 (18)

Following [20] we fix the Prandtl number and the aspect ratio as Pr= 1 and A= 1.
The convergence studies proceed for two different cases. For the first case, we fix the Grashof

number to be Gr= 105 and vary the Reynolds number until the first instability sets in. This
instability was found to take place at Re= 2413 with mcr= 3 and �cr=−0.09017. With the
increase of the Grashof number, the stable stratification plays a more noticeable role, so that
the flow stabilizes. At Gr= 106 and Re= 3000 the flow is stable. With further increase of
the Grashof number the flow destabilizes again. Thus, for the second problem we fixed the
Reynolds number to be Re= 3000 and increased the Grashof number until this instability was
observed at Gr= 1.0366× 107, mcr= 3 and �cr=−1.0241. These two sets of critical numbers
show that the dependence of Recr on Gr or Grcr on Re is not trivial. It would be interesting to
map the stable flow region in the Gr–Re plain; however, this task is beyond the scope of the
present study.

Since stability of such non-isothermal flow was not studied before, we report here the flow
patterns (Figure 8) and the modules of the most unstable perturbations (Figures 9 and 10) for
the two cases considered. At a relatively small Grashof number Gr= 105 (Figure 8(a)–(c)), the
patterns of meridional flow and azimuthal velocity are similar to those observed for isother-
mal flow (see, e.g. [5]). Modules of the most unstable perturbation (Figure 9) are also sim-
ilar to those reported in [6] for the isothermal flow. At the same time, such a modest value
of the Grashof number is sufficient to make the azimuthal mode m= 3 less stable than the
mode m= 2, which is the most unstable in the isothermal case [6, 12]. Note, that in the case
considered, the m= 3 most unstable mode has �cr<0, i.e. it rotates in the direction opposite
to the disk rotation. The isothermal analysis of [6] predicted the same direction of rotation
for this mode.

When the Grashof number increases the stable stratification suppresses the flow. Obviously, the
suppression is stronger far from the rotating disk, which is observed in the flow pattern (Figure
8(d)–(f)). The meridional vortex is pushed in the upper half of the cylinder, while the flow in the
lower half is almost completely suppressed. Examining the patterns of the modules of the most
unstable perturbation, we notice that perturbation (Figures 9 and 10) of the meridional velocity
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Figure 8. Flow patterns for non-isothermal rotating disk–cylinder flow; A= 1, Pr= 1: (a)–(c) Gr= 105,
Re= 2413; and (d)–(f ) Gr= 1.037× 107, Re= 3000.

components also are pushed upwards towards the rotating disk, which is most emphasized in the
pattern of the radial velocity perturbation. At the same time we observe sharp maxima of the
temperature and the azimuthal velocity perturbations located near the centre of the sidewall, as
well as rather strong temperature perturbation in the lower half of the cylinder. Apparently, more
detail studies are needed to give a satisfactory description to the instability mechanism. Here,
we can only point on the qualitative difference in the perturbation patterns obtained for the two
cases considered, which means that in spite of the same critical azimuthal wavenumber and the
same direction of the traveling wave propagation, there exist different instability mechanisms that
replace each other when the governing parameters are varied.

The convergence of the critical parameters for different grid stretching is shown in Figure 11.
Based on the grid 200× 200 we found that the ‘optimal’ stretching parameter for the case with fixed
Gr= 105 is a= 0 and b= 0.04. We repeated the calculations with this stretching and with another
and denser one a= b= 0.1, which was used for the comparison with the ‘optimal’ one. Among the
three different sets of the stretching parameters, we observe the fastest convergence of the critical
Reynolds and Grashof numbers for the ‘optimal’ stretching a= 0 and b= 0.04 (Figure 11(a)
and (c)). The critical frequencies, however, converge faster when the denser stretching is used
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Figure 9. Modulus of three-dimensional most unstable perturbation of the non-isothermal rotating
disk–cylinder flow. A= 1, Pr= 1, Gr= 105, Re= 2413, m= 3, �cr=−0.090179.

(Figure 11(b) and (d)). Starting from the grid size 200× 200 we again observe a significant
improve of the results obtained on the uniform grid a= b= 0 when the Richardson interpolation is
applied. Note that the Richardson extrapolation improves only results belonging to the monotonic
part of the curves shown in Figure 11. Its application to the grids 90× 90 and 100× 100 does not
exhibit any improvement in Figure 11(a) and (b).

3.5. Rate of convergence on uniform and stretched grids

To study how numerical error vanishes with the mesh refinement, it is necessary to compare
numerical results with the exact solutions. For the problems considered in Sections 3.1 and 3.3, we
can use results obtained by the Galerkin method in [4, 6] and consider them as ‘exact’. The relative
deviation of the critical Grashof and Reynolds number is defined as D= |(Qcr,N − Qcr,G)/Qcr,G|,
where Q stays for one of the parameters Gr or Re, the subscript cr,N corresponds to the critical
value calculated on the N -nodes grid, and the subscript cr, G corresponds to the result obtained by
the Galerkin method. The dependence of the deviations on the value 1/N 2 is shown in Figure 12.
Apparently, the value 1/N is equal to the grid size of the uniform grid and is an averaged grid
size for the stretched grid.

The deviation D for the convection in a cylinder with a heated wall (Section 3.1) vanishes
proportionally to N−2 for the uniform grid and for the stretching with a= b= 0.12 (Figure 12(a)).
When the stretching is applied in only one direction, i.e. a= 0 and b= 0.12 the deviation points
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Figure 10. Modulus of three-dimensional most unstable perturbation of the non-isothermal rotating
disk–cylinder flow. A= 1, Pr= 1, Gr= 1.037× 107, Re= 3000, m= 3, �cr=−1.0242.

depart for the straight curve; however, the tendency of the deviation decay remains proportional to
N−2. The problem of stability of the rotating lid–cylinder system (Section 3.3) requires a better
spatial resolution. In this case, the deviation decreases proportionally to N−2 only starting from
N>100 or larger (Figure 12(b)).
Since the deviation vanishes proportionally to N−2 also for the stretched grids, it is possible

to apply the Richardson extrapolation also there. We compared the results of the Richardson
extrapolation for the uniform and stretched grid and found that the results almost do not differ.
Thus, for both problems related to Figure 12 the results start to differ in the fifth decimal digit.
This shows that the result of the Richardson extrapolation cannot be significantly improved by a
stretching.

4. CONCLUDING REMARKS

We studied the effect of grid refinement and stretching on the convergence of the critical parameters
corresponding to the three-dimensional instability of axisymmetric steady flows. The whole analysis
was performed using a low-order finite volume method. On the basis of above results, we can
reconfirm the conclusion of [1] made for the stability problems related to convective flows in
rectangular cavities. Here, we conclude once more that to obtain reliable results on flow stability
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it is necessary to use rather fine grids with at least 100 nodes in the shortest spatial direction. This
finding can be confirmed also by the convergence studies of [13, 15].

The example of Section 3.1 shows that the Richardson extrapolation can significantly improve
results obtained on uniform grids. It was rather unexpected to find out that for other problems
considered here and having discontinuity points at the boundaries the Richardson extrapolation
also significantly improves results. We showed also that the choice of a good grid stretching is not
obvious and needs to be studied separately. Here, we tried to pick up ‘optimal’ stretching parameters
on the basis of already known and sufficiently accurate result. This way did not succeed for the
problem considered in Section 3.2. Apparently, this approach is not applicable to the problems
where the converged result is not known a priori. In view of that, we conclude that a combination
of fine uniform grids with the Richardson extrapolation can yield better results than an arbitrarily
chosen stretching.

Finally, it is emphasized once more that the high level of sparseness of the Jacobian matrices
makes calculations of their LU decompositions rather fast. The characteristic times obtained
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using MUMPS package are given in the Appendix. The fast calculation of the LU decomposition
combined with fully Jacobian exact Newton iteration for calculation of steady states and Arnoldi
iteration for solution of eigenproblems allowed us to perform the detail convergence studies. It
allows one also to perform the parametric stability analysis of different flows, which is planned
for our future studies.

APPENDIX A

Some details on the convergence of the Newton iteration used for calculation of the steady flows
and the secant method used for calculation of the marginal values of the governing parame-
ters are given in [1]. All the estimations and conclusions made there are correct also for the
present study. Here, we report the consumed central processing unit (CPU) time and memory
for the problem considered in Section 3.4 (Figure A1). For this problem, the three compo-
nents of velocity and the temperature must be calculated to obtain a steady-state flow, which
make this problem more difficult than those considered in [1] and other sections here, for which
only two velocity components were needed for a steady state. As explained above, the Jaco-
bian matrix describing the linear stability of this flow is necessarily complex, which also makes
the calculation of its eigenvalue a tougher problem. Comparison of the CPU times and mem-
ory consumed here (Figure A1) with the corresponding results of [1] shows that in the present
case we need slightly longer runs and noticeably larger memory. Our estimations show that the
CPU time grows as N 2.6, N 2.75, and N 2, for the real Jacobian, complex Jacobian and Arnoldi
iteration, respectively, and the consumed memory grows as N 2.3 for both real and complex
Jacobian matrices.
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matrix needed for the Newton iteration (�), the complex Jacobian matrix with a complex shift needed
for the sift-and-invert Arnoldi iteration (♦), and the Arnoldi eigensolvers (©). The estimation is done for

the problem considered in Section 3.4.

For other problems considered here, the estimations for the Newton iteration steady-state solver
should be taken from [1], and the estimations for the eigensolvers from the above example. All
the calculations reported here were carried out on the Itanium 2 personal workstation.
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